1. Pokrovskiy A. V. Diseases of the aorta and its branches. M.: Medicine. 1979. Russian. Покровский А. В. Заболевания аорты и ее ветвей. М.: Медицина.1979. 326 с.
2. Parsche P., Schmid P., Hofler H. et al. Diagnosis of aneurysms of the aorta and is large branches. A clinical pathoanatomical study. Munch. Med. Wochenschr, 1980; 122 (46):1641–1644.
3. Olsson C., Thelin S., Stahle E., et al. Thoracic aortic aneurysm and dissection: Increasing prevalence and improved outcomes reported in a nationwide populationbased study of more
4. than 14,000 cases from 1987 to 2002. Circulation, 2006; 114:2611–8.
5. Hagan P. G., Nienaber C. A., Isselbacher E.M et al. The International Registry of Acute Aortic Dissection (IRAD): new insights into an old disease. JAMA. 2000 Feb 16; 283 (7):897–903.
6. Kroner B. L., Tolunay H. E., Basson C. T. et al. The National Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions (GenTAC): results from phase I
7. and scientific opportunities in phase II. Am Heart J. 2011; 162 (4):627–32.
8. Ince H., Nienaber C. A. Etiology, pathogenesis and management of thoracic aortic aneurysm. Nat Clin Pract Cardiovasc Med. 2007; 4 (8):418–27.
9. Hiratzka L. F., Bakris G. L., Beckman J. A. et al. Guidelines for the Diagnosis and Management of Patients With Thoracic Aortic Disease. J. Am. Coll. Cardiol. 2010; 55 (14): e27–e129.
10. Phillippi J. A., Klyachko Е. А., Kenny J. P. et al. Basal and oxidativestress induced expression of metallothionein is decreased in ascending aortic aneurysms of bicuspid aortic valve
11. patients. Circulation 2009; 119 (18):2498–506.
12. Theruvath T. P., Jones J. A., Ikonomidis J. S. Matrix Metalloproteinases and Descending Aortic Aneurysms: Parity, Disparity, and Switch. Journal of Cardiac Surgery, 2012; 27:81–90.
13. Freestone T., Turner R. J, Coady A., et al. Inflammationand matrix metalloproteinases in the enlarging abdominalaortic aneurysm. Arterioscler Thromb Vasc Biol. 1995; 15:1145–51.
14. V. Jackson, T. Olsson, S. Kurtovic. Matrix metalloproteinase 14 and 19 expression is associated with thoracic aortic aneurysms. J Thorac Cardiovasc Surg 2012; 144:459–66.
15. Irtyuga O. B., Voronkina I. V., Smagina L. V. et al. Matrix metalloproteinase activity in patients with ascending aortic aneurysm of different etiology. Arterial Hypertension
16. ; 16 (6):587–591. (Иртюга О. Б., Воронкина И. В., Смагина Л. В. и др. Активность матриксных металлопротеиназ у больных с аневризмой восходящего отдела аорты различной этиологии. Артериальная гипертензия 2010; 16 (6):
17. –591).
18. Schmid F. X., Bielenberg K., Schneider A. et al. Ascending aortic aneurysm associated with bicuspid and tricuspid aortic valve: involvement and clinical relevance of smooth muscle cell apoptosis and expression of cell death-initiating proteins.
19. Eur. J. Cardiothorac. Surg. 2003; 23 (4):537–543.
20. Jones J. A., Ruddy J. M, Bouges S., et al. Alterations in membrane type-1 matrix metalloproteinase abundance afterthe induction of thoracic aortic aneurysm in a murinemodel. Am J Physiol Heart Circ Physiol 2010; 299: H114–H124.
21. Lindsay M. E., Dietz HC. Lessons on the pathogenesis of aneurysm from heritable conditions. Nature. 2011 May 19; 473 (7347):308–316.
22. Blunder S., Messner B., Aschacher T., et al. Characteristics of TAV- and BAVassociated thoracic aortic aneurysms – smooth muscle cell biology, expression profiling, and histological analyses. Atherosclerosis 2012; 220 (2):355–361.